AQA GCSE Physics Equation Sheet

Topic 1 - Energy

Equation	Symbol	Unit
$E_{k}=\frac{1}{2} m v^{2}$	$\begin{aligned} & E_{k}=\text { kinetic energy } \\ & m=\text { mass } \\ & v=\text { speed } \end{aligned}$	$\begin{aligned} & E_{k}=J \text { (joules) } \\ & m=k g \text { (kilograms) } \\ & v=m / s \text { (meters per second) } \end{aligned}$
$E_{e}=\frac{1}{2} k e^{2}$	$\mathrm{E}_{e}=$ elastic potential energy $\mathrm{k}=$ spring constant e $=$ extension	$\begin{aligned} & E_{e}=J \text { (joules) } \\ & k=N / m \text { (newton's per meter) } \\ & e=m \text { (meters) } \end{aligned}$
$E_{p}=m g h$	```Ep gravitational potential energy m}=\mathrm{ mass g= gravitational field strength h = height```	$\begin{aligned} & E_{p}=J \text { (joules) } \\ & m=\mathrm{kg} \text { (kilograms) } \\ & g=N / \mathrm{kg} \text { (newton's per } \\ & \text { kilogram) } \\ & h=m \text { (meters) } \end{aligned}$
$\Delta E=m c \Delta \theta$	$\Delta E=$ change in thermal energy $\mathrm{m}=$ mass $c=$ specific heat capacity $\Delta \theta=$ temperature change	$\Delta E=J$ (joules) $m=k g$ (kilograms) $c=\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$ (joules per kilogram per degree Celsius) $\Delta \theta={ }^{\circ} C$ (degree Celsius)
$P=\frac{E}{t}$	$\begin{aligned} & P=\text { power } \\ & E=\text { energy transferred } \\ & t=\text { time } \end{aligned}$	$\begin{aligned} & P=W \text { (watts) } \\ & E=J \text { (joules) } \\ & t=s \text { (seconds) } \end{aligned}$
$P=\frac{W}{t}$	$\begin{aligned} & P=\text { power } \\ & W=\text { work done } \\ & t=\text { time } \end{aligned}$	$\begin{aligned} & P=W \text { (watts) } \\ & E=J \text { (joules) } \\ & t=s \text { (seconds) } \end{aligned}$
$\text { Efficiency }=\frac{\text { useful energy out }}{\text { total energy in }}$		
$\text { Efficiency }=\frac{\text { useful power out }}{\text { total power in }}$		

Topic 2 - Electricity

Equation	Symbols	Units
$Q=I \dagger$	$\begin{aligned} & Q=\text { Charge } \\ & I=\text { Current } \\ & t=\text { Time } \end{aligned}$	$\begin{aligned} & Q=C \text { (coulombs) } \\ & I=A \text { (amps) } \\ & t=s \text { (seconds) } \end{aligned}$
$V=I R$	$\begin{aligned} & \text { V = Potential difference } \\ & I \text { = Current } \\ & \text { R = Resistance } \\ & \hline \end{aligned}$	$\begin{aligned} & V=V \text { (volts) } \\ & I=A \text { (amps) } \\ & R=\Omega \text { (ohms) } \end{aligned}$
$\mathrm{P}=\mathrm{V} \mathrm{I}$	$\begin{aligned} & P=\text { Power } \\ & V=\text { Potential difference } \\ & I=\text { Current } \end{aligned}$	$\begin{aligned} & P=W \text { (watts) } \\ & V=V \text { (volts) } \\ & I=A \text { (amps) } \end{aligned}$
$P=I^{2} R$	$\begin{aligned} & P=\text { Power } \\ & I=\text { Current } \\ & R=\text { Resistance } \end{aligned}$	$\begin{aligned} & P=W \text { (watts) } \\ & I=A \text { (amps) } \\ & R=\Omega \text { (ohms) } \end{aligned}$
$E=P \dagger$	$\begin{aligned} & E=\text { Energy } \\ & P=\text { Power } \\ & t=\text { Time } \end{aligned}$	$\begin{aligned} & E=J \text { (joules) } \\ & P=W \text { (watts) } \\ & t=s \text { (seconds) } \end{aligned}$
$E=Q V$	$\begin{aligned} & E=\text { Energy } \\ & Q=\text { Charge } \\ & V=\text { Potential difference } \end{aligned}$	$\begin{aligned} & \mathrm{E}=\mathrm{J} \text { (joules) } \\ & \mathrm{Q}=C \text { (coulombs) } \\ & \mathrm{V}=\mathrm{V} \text { (} \text { volts } \text {) } \end{aligned}$

Topic 3 - Particle Model of Matter

Equation	Symbols	Units
$\begin{gathered} \rho=\frac{m}{V} \end{gathered}$	$\begin{aligned} & \rho=\text { density } \\ & m=\text { mass } \\ & V=\text { volume } \end{aligned}$	$\begin{aligned} & \rho=\mathrm{kg} / \mathrm{m}^{3} \text { (kilgorams per } \\ & \text { meter cubed } \\ & m=\mathrm{kg} \text { (kilograms) } \\ & V=\mathrm{m}^{3} \text { (meters cubed) } \end{aligned}$
$\Delta E=m c \Delta \theta$	$\Delta E=$ change in thermal energy $m=$ mass $c=$ specific heat capacity $\Delta \theta=$ temperature change	$\Delta E=J$ (joules) $m=k g$ (kilograms) $c=\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ (joules per kilogram per degree Celsius) $\Delta \theta={ }^{\circ} C$ (degree Celsius)
$E=m L$	$\begin{aligned} & E=\text { Energy } \\ & m=\text { mass } \\ & L=\text { specific latent heat } \end{aligned}$	$\begin{aligned} & E=J \text { (joules) } \\ & m=\mathrm{kg} \text { (kilograms) } \\ & L=J / \mathrm{kg} \text { (joules per kilogram) } \end{aligned}$
pV = constant	$p=$ pressure $\mathrm{V}=$ volume	$\begin{aligned} & p=P a \text { (pascals) } \\ & V=m^{3} \text { (meters cubed) } \end{aligned}$

Topic 5 - Forces

Equation	Symbols	Units
$W=m g$	```W = weight m}=\mathrm{ mass g = gravitational field strength```	W = N (newton's) $m=k g$ (kilograms) $g=\mathrm{N} / \mathrm{kg}$ (newton's per kilogram)
$W=F s$	$\begin{aligned} & W=\text { work done } \\ & F=\text { force } \\ & s=\text { distance } \end{aligned}$	$\begin{aligned} & W=J \text { (joules) } \\ & F=N \text { (newtons) } \\ & s=m \text { (meters) } \end{aligned}$
$F=k e$	$\begin{aligned} & F=\text { force } \\ & k=\text { spring constant } \\ & e=\text { extension } \end{aligned}$	```F=N (newtons) k=N/m (newtons per meter) e=m (meters)```
$E_{e}=\frac{1}{2} k e^{2}$	$E_{e}=$ elastic potential energy $\mathrm{k}=$ spring constant $e=$ extension	$\begin{aligned} & E_{e}=J \text { (joules) } \\ & k=N / m \text { (newtons per meter) } \\ & e=m \text { (meters) } \end{aligned}$
$M=\mathrm{Fd}$	$\begin{aligned} & M=\text { moment } \\ & F=\text { force } \\ & d=\text { distance } \end{aligned}$	$\begin{aligned} & M=N m \text { (newton-meters) } \\ & F=N \text { (newtons) } \\ & d=m \text { (meters) } \end{aligned}$
$p=\frac{F}{A}$	$\begin{aligned} & p=\text { pressure } \\ & F=\text { force } \\ & A=\text { area } \end{aligned}$	$\begin{aligned} & p=P a \text { (pascals) } \\ & F=N \text { (newtons) } \\ & A=m^{2} \text { (meters squared) } \end{aligned}$
$p=h \rho g$	$\begin{aligned} & p=\text { pressure } \\ & h=\text { height } \\ & \rho=\text { density } \\ & g=\text { gravitational field } \\ & \text { strength } \end{aligned}$	$p=P a$ (pascals) $h=m$ (meters) $\rho=\mathrm{kg} / \mathrm{m}^{3}$ (kilgorams per meter cubed $g=\mathrm{N} / \mathrm{kg}$ (newtons per kilogram)
$s=v t$	$\begin{aligned} & s=\text { distance } \\ & v=\text { speed } \\ & t=\text { time } \end{aligned}$	$\begin{aligned} & s=m \text { (meters) } \\ & v=m / s \text { (meters per second) } \\ & t=s \text { (seconds) } \end{aligned}$
$a=\frac{\Delta v}{t}$	a = acceleration $\Delta v=$ change in velocity $t=$ time	$a=\mathrm{m} / \mathrm{s}^{2}$ (meters per second squared) $\Delta v=m / s$ (meters per second) $t=s$ (seconds)
$v^{2}-u^{2}=2 a s$	$v=$ final velocity $u=$ initial velocity $a=$ acceleration $s=$ distance	$v=m / s$ (meters per second) $u=m / s$ (meters per second) $a=\mathrm{m} / \mathrm{s}^{2}$ (meters per second squared) $s=m$ (meters)

	$F=$ force $m=$ mass $a=$ acceleration	$F=N$ (newtons) $m=\mathrm{kg}$ (kilograms) $a=m / s^{2}$ (meters per second $s q u a r e d)$
$p=m v$	$p=$ momentum $m=$ mass $v=$ velocity	$p=\mathrm{kg} \mathrm{m} / \mathrm{s}$ (kilograms metre per second) $m=\mathrm{kg}$ (kilograms) $v=m / s$ (meters per second)
$F=\frac{m \Delta v}{\Delta t}$	$F=$ force $m=$ mass $v=$ velocity $t=$ time	$F=N$ (newtons) $m=k g$ (kilograms) $v=m / s$ (meters per second) $t=s$ (seconds)

Topic 6 - Waves

Equation	Symbols	Units
Period $=\frac{1}{\text { frequency }}$		Period $=s$ (seconds) Frequency $=\mathrm{Hz}$ (herts)
$T=\underline{1}$	$T=$ Period $f=$ frequency	$T=s$ (seconds) $f=H z$ (herts)
$v=f \Lambda$	$v=$ velocity $f=$ frequency $\Lambda=$ wavelength (lambda)	$v=m / s$ (meters per second) $f=H z$ (herts) $\Lambda=m$ (meters)
Magnification $=\frac{\text { image height }}{\text { object height }}$		Ratio so has no units

Topic 7 - Magnetism and Electromagnetism

Equation	Symbols	Units
$F=B I I$ Note this is a capital I and a lowercase I	$\begin{aligned} & F=\text { force } \\ & B=\text { magnetic flux density } \\ & I=\text { Current } \\ & I=\text { length } \end{aligned}$	$\begin{aligned} & F=N \text { (newtons) } \\ & B=T \text { (tesla) } \\ & I=A \text { (Amps or Amperes) } \\ & I=m \text { (meters) } \end{aligned}$
$\frac{V_{p}}{V_{s}}=\frac{n_{p}}{V_{s}}$	$V_{p}=$ potential difference across the primary coil $\mathrm{V}_{s}=$ potential difference across the secondary coil $n_{p}=$ number of turns on the primary coil $\mathrm{n}_{\mathrm{s}}=$ number of turns on the secondary coil	$V_{p}=V$ (volts) $V_{s}=V$ (volts) n_{p} and n_{s} have no units as they are just numbers
$V_{s} I_{s}=V_{p} I_{p}$	$\mathrm{V}_{s}=$ potential difference across the secondary coil $V_{p}=$ potential difference across the primary coil $I_{s}=$ current in the secondary coil $I_{p}=$ current in the primary coil $V_{s} I_{s}=$ power output $V_{p} I_{p}=$ power input	$\begin{aligned} & V_{s}=V \text { (volts) } \\ & V_{p}=V \text { (volts) } \\ & I_{s}=A \text { (Amps or Amperes) } \\ & I_{p}=A \text { (Amps or Amperes) } \end{aligned}$

